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Abstract: A goal of stochastic hydrology is to generate synthetic daily rainfall that is representative of the
statistical characteristics of the historical record. Such sequences are used m catchment studies to assess the
uncertainty n the catchment response that is due to climatic variability. A major deliciency of existing
stochastic generation methods is their nability to represent variability at longer (seusonal, annual and inter-
annual} tme scales. This paper presents a nonparametric model for generating single-site daily rainfall
accurrence, which is formautated to reproduce longer-term variahility and low-frequency featurss such as
drought and sustained wet periods, while stll reproducing characteristics at daily time scales. The model
assumes a Markovian dependence structure (assuming that a finite number of previous values in the sequence
are sufficient to characterise the rainfall state on the next day). Parsimony is achieved within the Markovian
framework by using “aggregate” variables that describe how wet it has been over a period of time. Actual
simulation proceeds by resampling from the historical record of rainfall cecurrence, conditional to the current
values of the associated predictors. The use of a seasonally representative sample at any given tine of vear
ensures an accurate represeniation of the seasonal variations present in the rainfail time series, The model is
applied to historical daily rainfall from Sydney. We find that the use of muliiple predictars produces
sequences that more closely reproduce the longer-term variabitity present in the historic records.
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of a predictor identification criterion. Jimeh and
Wehster [1996] question the use of traditionally
used criteria, such as the Akaike Information
Criterion  (AIC), for selecting the number of

1. INTRODUCTION

Synthetic sequences of ramfall that are statisticalty
consistent with the observed characteristics of the
historical record can provide useful mput data for

cafchment “wafer management studies. These
synthetic sequences are each assumed to he
eqgually likely to occur in the future, with the same
likelihood as the historicat sequence, and can be
used to quantify the uncertainty in the catchment

They suggest that such criteris be used with
caution. These criferia use maximum likelthood (or
a similar measure) to give an indication of the
soodness of fit of the model parameters (o the data,
and they depend on an assumed prebability mass

parameters used----a-raniall- occurrence--mod el

response that results from climatic variability.

Methods for generating synthetic sequences of
daily rainfall are reviewed by Woolhiser {1992].
Wilks and Wilby [1999] and Srikanthan and
McMahon {2000] note that these methods typically
do not reproduce the longer-term variability found
in historical daly rainfall records, This paper
presents a nonparametric model for the stochastic
generation of single-site daily rainfall occurrence
that is designed to address this issue. The model
uses multiple predictors and i formulated 1o
reproduce iow-frequency features such as drought
and sustained wei pertods.

The use of multiple predictors necessitates the use

function of the residuals from a one-day-ubead
torecast. The predictor  selection  methods
described in the first paper of this series [Hacrold
et al,, 2001a] provide a nonparametric alternative
to the use of ¢riterin such as the AIC, However, the
guality of the one-day-shead [orecasts made using
the selected predictors does not ndicate whether
the sequences generated by the model will
reproduce  historical longer-term  variability, A
differert method is reguired to assess the longer-
term hehaviour of generated sequences. Such a
method is described in section 3 of this paper, after
a description of the rainfall occurrence model 18
given {section 2), Section 4 assesses the generated
sequences from the models formed to reproduce
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longer-term  variability and from the wmodels
formed from the predictors selected in Harrold et
al. [2001a). Conclusions are presented in section 5.

2.  THE RESAMPLING MODEL FOR
RAINFALL OCCURRENCE

Our resampiing model, lermed ROG to denote
“ramfall oceurrence generator”, is based on
Sharma and Lall [1999). The differences m our
approach from the Sharma and Lall [1999] model
are:

VaTalal s
AUl

= Raintall
time, rather than resampling entire wet spells or
entire dry spells. An advantage of resampling one
day at a time is that unprecedentedly long wet and
dry spells may occur in the generated sequences.

s Multipte predictors for rainfall occurrence are
used here. Sharma and Lall vsed a single predicior.
The use of multiple predictors will enable us to
capture  both  short-term  and  fonger-term
dependence structure, and result generated
sequences  that more closely reproduce the
variability fonnd in the historical record.

We  simulate  short-term dependence  using
predictors such as ramfall occurrence al & short
fime lag from the present, and longer-term
dependence using predictors that describe how wet
it has been over a longer length of time.
Simaulagon _proceeds by  resampling from the

are statistically similar o the historical sequence,
with both short-term and longer-lerm statislics
reproduced. A method of predictor selection, bused
upon this principle, ¢ to first select a short-lerm
predictor, then a medium-term predictor, then
long-term predictor, and then a very-long-lerm
predictor if required. This approach captures the
features of the historicul record in a parsimonious
way. One predictor al a tme is added to the
existing predictor set, and the resulting model is
evaluated by comparing the short-term, medinm-
term, and longer-term characteristics of the 100
sequences generated by the model with the
characteristics of the historical record. The best
performing  predictor  (as  shown by - these
commparisons) 1s chosen at each sluge.

4. RESULTS

When we applied owr ROG medel and our
approach for stepwise selection of predictors to
Sydney rainfall occurrence (1859-1998), we added
the foilowing predictors to the model:

1. Rainfall occurrence on the previous day.

2. ‘The wetness state (very wet, wetl, average, dry,
or very dry) for the previous 90 days.

3. The wetness state for the previcus year,
leading up to the current day.

4. 'The wetness state for the previous five years,
lzading up to the current day.

geT :
i 130T

historicat record of rainfall occurrence, conditional
to the current values of the predictors. We model
the seasonal varjations present in the rainfall tune
series uging a-15-day moving window, centred on
the current day. This forms a  seasonaily
representative sawmple at any given time of year,

pasial
FTOGaT

Wetormuhredowr rainfatt-occurrenes
these predictors. ROG(1) denotes a model which
uses rainfall occurience on the previous day (Y}
as the single predictor. This model resamples from
the days in our scasonally representative sample
that are preceded by wet/dry cays 1f the current
valpe of Yo, iy wetdry, ROG(Z), ROG3), and

et Tyl
= =

WhICK TSTadsy data - frot Hll sy We use
threshold of 0.3mm to decide whether a day is wet
or dry [atter Buishand 19781

Details of the resampling model are presented m
Harrold et al. [2001b]. (Note that one of the key
steps in the procedure is the selection of the
number of nearest neighbours used for resampling.
This is not discussed here due reasons of space and
simplicity  of  presentation). The  meodel
conditionally resamples from a seasonal subset of
the historic record, using nearest meighbour
rechniques. The performance of the model 18
evulnated by comparing 100 sequences generated
hy lhe model, each of the same length as the
historical record, with the historical record.

3. PREDICTOR SELECTION

The vuinfall occurrence model formed from the
selected predictors should generate sequences that
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ROG(4) denote models which pse the two, three,
or four selected predictors, respectively, These
more complicated models conditionally resample
from the seasonally representative sample based on
the current values of the predictors.

Results are presenied here for ROG(1) and
ROG(4). The results for ROG(1) are presented in
Figures 1 o 6. Figures 1 to 2 demonstrate the
ability of 4 mode] that mcorporates a single short-
term  predictor o reproduce the short-lerm
statistical characteristics of the historical record.
Figures 3 to 6 demonstrate the inability of such a
model to reproduce the medium-term and longer-
tern characteristics of the historical record. The
results for ROG) are presented in Figures 7 10
11, Figures 7 to 11 show how the use of a
combination of shori-term and  longer-term
predictors gives o model diat betier reproduces the
medium-term and longer-term  characeristics of
the historical record. We also found that the short-



term characteristics were reproduced by ROG{4).

Figure 1 shows the fraction of wet days for the
ROG(1) model for Sydney, as it varies with time
of year. The distribution of the statistic [rom the
100 venerated sequences is shown by the 5%
percentite, median, and ysh percentile lines.
Superimposed on this graph are the historical
values (circles). It can be seen that ROG(1}
adequately reproduces the historical values.
ROG(1) also adequately reproduces the historical
daily lag-one correlations, as shown in Figure 2.

sequences from ROG(1), are shown in Figure 4,
with the historical values supermmposed on the
plot.

The mean nomber of wet days per season, and the
standard deviation of the number of wet days per
season, are shown i Figure 3. The generated
sequences from ROG(1) reproduce the historical
means, but not the historical standard deviations.,

A probability plot of the disgribution of wet days
per year is given in Figure 6. The tigure shows that
the drizst year on record for Sydney has cnly 90
wet days, but the wettest year has approximarely
220 wet days. The generated sequences lrom

Q - &%, median, 95% generaled value . . s .
" 5 bisorial vahaes ROG(D) do not reproduce this distibution. Nole
- that the standard deviation of the number of wet
0 ] . . . . . .
e days per year is directly related to this distribution,
B o and is not reproduced either.
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Figure 3 shows the mean length of the wet spells
. - =
(sequences of consecutive wet days) and the G L
standard deviafion of the wet spelis ending n each s 5 a4 0w 5 05 AW
season sSeasan

of four seasons (Spring, Summer, Autumn and
Winter) for ROG(1) for Sydney. Values of each
statistic were calculated for each of the 100
generated sequences, and the distribution of these
values is shown as a boxplot. The historical values
are superimposed on the plot, connected by a line.
The generated sequences adequately reproduce the
historical mean wet spell lengths, but oot e
histarical standard deviations. Similac resalts were
obtained for dry spells. Boxplots formed from the
longest wet spell and the longest dry spell ending
in sach season, for each of the 100 generated

Figure 4. ROG(1): Longest dry spell {left panel)
and longest wet spell in each season for Sydney.
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Figure 5. ROG(1); Mean (left panel) and standard
deviation of wet days per season for Sydney.
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Figure 6. ROG(1): Distribution of wet days per
year for Sydney.

found i the stndawd deviatious of dry spell
lengths. The representation of extreme dry and wet
spell lengths (Figure 8) has alse improved.

Figure 9 shows the results for ROG(4) for the
mean number of wet days per seasom, and the
standard deviation of the number of wet days per
season. There is 4 substantial mprovement in the
representation of the seasonal standard deviations,
compared to the results for ROG(1} (cf. Figure 5).
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Figure 8. ROG(4): Longest dry spell (left panel)
and longese wet spell in each season for Sydaney.
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We found that generated sequences from ROG(H)
adequately reproduce the historical fraction of wet
days and the historical daily lag-one correlations,
with simifar results to these shown in Figures 1
and 2. Generated sequences from ROG(4) also
adequately reproduce both the mean wei spell
lengths, and the standard deviations of the spell
lengths, as shown in Figure 7. The result for the
standard deviations is a marked improvement over
ROG(1) {cf. Figure 3). This improvement was also

o historical values
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Figure 18. ROG(4): Distribution of wet days per
year for Sydney.

284



=+
[=]
E-
L o
3
3
£ ol
Qo
o
pl
1 2 3 4 g é T 2] 4 H Y
iag
?a wre 11, ROG(4): Autocorrelation function of
et days per year for Sydney.

The probability plot of the distribution of wet days
per year for ROG(4) is given i Figure 10, The
cenerated sequences from ROG(4) adequoately
reproduce this distribution. We consider this to be
a major achievement of our model. The standard

deviation of the number of wet days per year is

also reproduced by ROG(4).

Figure 11 shows the autocorrelation function of the
number of wet days per year, from lag one up (o
lag ten. A line joins the ten historical vatues, and
box plots of the values from the generated
sequences from ROG(4) are shown. This very-
long-term statistic was not reproduced uatil the

fourth predictor {the five-year wetneq\‘ state) was
A_s 3l TAThala shha Ihio nl by

found using the method described 1 section 3 of
this paper (ie. ROG(2), ROG(3), and ROG(4)
reproduce the distribution of wet days per year
better than models formed lrom  predictors
identified using the methods cutlined in Harold et
al. [2001a} {Le. ROG(ZA) and ROG{3A). This
difference was also found o apply to other
seasonal, annual and very-long-term statistics. In
formulatmy ROGHE), the first predictor was found
to be good at matching daily level dependencies,
ihe second predictor good af matching seasonal
level dependencies, the thied predictor good at
maiching annual level dependencies, and the
fourth predictor good at matching interannual level
dependencies. A combination of these four
predictors forms a model that can capture mach of
the nataral variability of the historical record. In
contrast, the predictor identification methods used
to formm ROG(2A) and ROG(34) pick the best
possible choice for rainfull occumence on the
current day. This is a one-step-zhead prediction,
and, apart from maiching shori-term
characteristics, this method does not produce
generated sequences that are statistically similar to
the historical sequetce.

Table 1. Sum of squared residoals (85R) from the
distribution of wet days per year, for various
models for Sydney rainfall occurrence,

addedto-our-medel—Ahtle-the-historical-vatues-are
not perfectly reproduced by ROG{4), the degree of
fong-term variability in the sequences produced by
the model s good, considering the complexity of
the natural processes that contribute to the
historical variability.

Wefonmd-that—theprobabitity - plots—of—the
distribution of the number of wet days per year

(Figures 6 and 10) gave a very gocd indication of

the overall quality of the gererated sequences, and
that if the generated sequences could reproduce
this distribution, then other statistics were also
well reproduced. We therefore used the probability

plots to compare all the models. The sum of

squared residuals (SSR) from the probability plots
were calculated based on the differences between
the historical vaiues and the mean of the generated
vaiues. The results of these calculations are shown
in Table 1. A smaller SSR indicates a better-fitting
model. In the Table, ROG(2A) and ROG3BA)
denote the models formed from the two-predictors
and the three-predictors {respectively) selected for
sach season using the predictor identification
methods desceibed in the first paper of this series
[Harrold et ai., 2001a}.

Table 1 shows that modeis formed trom predictors
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Model S5k
RO 11740
ROG(Z; 1657
ROG() 934
ROG( 930

ROG(ZA) FO35
ROG(3A) 2786

We applied our ROG model to Melbourne ramfall
occurrence and chisined similar resuits to those
reporied here, ariving al a recommended four-
predictor model wsing the same predictors as the
Sydney model (except the fourth predictor selected
was the wemess state for the previous four vears).
We also applied a moedel formed from a
combination of three predictors to  rainfall
occurrence  from  eleven  additional  Australian
locations, including Adelaide, Alice Springs,
Brisbane, Broome, Cowra, Darwin, Kalgoorlie,
Mackuy, Monto, Perth, and Tenterfield. The results
that were obtained indicated that some localions,
such as Adelaide, may only require two predictors
to adequately maodel the shori-term and longer-
termn variability of the historical raintall occurrence



pattern, white other locations may require three ot
four predictors. The result for Adelaide may
indicate that its ramnfall record 1y less affected by
{fong-term climatic influences (such as the El Nino
Southern Oscillation) than other locations.

5. CONCLUSIONS

We have presented a new model for generating
long synthetic sequences of daily rainfall
accurrence that reproduce both the short-term and
longer-term variability of the historical record, and
we have presented a method for selecting the
sredictors used in the model. These generated
sequences provide a better representation of
droughts and sustained wet periods than was
previously possible. Such features are of great
interest in calchment management studies, and the
venerated sequences can be used in such studies to
enable better (uantification of the uncertainty m
the catchment respouse that is dus to climabc
variability. The model resumples from a seasonal
subset  of (he historical record of rainfall
occurrence, conditional to the values of a set of
muitiple predictors. The predictors are formed
solely from previous values in the sequence, and
represent shori-term, seasonal, anpual, and iater-
annual features of the rainfall sequence. Predictors
are selected in a stepwise procedure, with the
shorter-term predictors selected first We find that
the use of these multiple predictors in our
ressnpiing _model produces generated sequences

produced by the chosen model will reproduce the
longer-term statistical properties of the historical
series.

6. TURTHELR WORK

Further research will focus on the problem of
stochastically generating raintall amount values for
all the wel days simolated by the ramiall
occarrence model. Details on the method lor
wdentifying predictors for such 4 model, and on the
procedure used to generate the rainfall amounts
will be published at a laler stage.
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